If it's not what You are looking for type in the equation solver your own equation and let us solve it.
140=80t-5(t^2)
We move all terms to the left:
140-(80t-5(t^2))=0
We get rid of parentheses
5t^2-80t+140=0
a = 5; b = -80; c = +140;
Δ = b2-4ac
Δ = -802-4·5·140
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-60}{2*5}=\frac{20}{10} =2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+60}{2*5}=\frac{140}{10} =14 $
| 9(n-4)=-18 | | 4x-3=12/2x+2 | | 32.51=6g+3.65 | | 14+b/5=2 | | j-88=-9 | | -4=-1=x | | 0.5x+7=3x-8 | | -4=-1x | | 9x-11+73=281 | | X-10+5x-50=180 | | 21+90=x | | y=2.5+4.5 | | 66=8y+2 | | 66=8y-2 | | q-50/7=5 | | x²+8x=0 | | 6-p=2 | | N-0.1+3.6=-4.7(n+4) | | 10x+8=7x+32 | | r=6=11 | | 6x=134 | | 8(g+4)=80 | | 7x=9-23 | | −12.78=−2.1n−2.16n | | 3b+5=8-4b. | | b/3b+5=8-4b. | | 4x+16.4=−3.6 | | -22+3x=-2x+48 | | 6x/5-50=-8 | | 7.5=9.9-0.4x | | -159+7x=-2x+75 | | 2=y-87/5 |